翻訳と辞書
Words near each other
・ Vojo Deretic
・ Vojo Dimitrijević
・ Vojo Gardašević
・ Vojo Kushi
・ Vojo Stanić
・ Vojo Ubiparip
・ Vojska
・ Vojsko
・ Vojsko, Idrija
・ Vojsko, Kozje
・ Vojsko, Vodice
・ Vojskova
・ Vojslavice
・ Vojta
・ Vojta Beneš
Vojta's conjecture
・ Vojtanov
・ Vojtech
・ Vojtech Alexander
・ Vojtech Christov
・ Vojtech Horváth
・ Vojtech Masný
・ Vojtech Mastny
・ Vojtech Pavelica
・ Vojtech Tuka
・ Vojtech Zamarovský
・ Vojtech Čelko
・ Vojtech, Called the Orphan
・ Vojteh Ravnikar
・ Vojtek


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Vojta's conjecture : ウィキペディア英語版
Vojta's conjecture
In mathematics, Vojta's conjecture is a conjecture introduced by about heights of points on algebraic varieties over number fields. The conjecture was motivated by an analogy between diophantine approximation and Nevanlinna theory (value distribution theory) in complex analysis. It implies many other conjectures in diophantine approximation theory, diophantine equations, arithmetic geometry, and logic.
==Statement of the Conjecture==
Let F be a number field, let X/F be a non-singular algebraic variety, let D be an effective divisor on X with at worst normal crossings, let H be an ample divisor on X, and let K_X be a canonical divisor on X. Choose Weil height functions h_H and h_ and, for each absolute value v on F, a local height function \lambda_. Fix a finite set of absolute values S of F, and let \epsilon>0. Then there is a constant C and a non-empty Zariski open set U\subseteq X, depending on all of the above choices, such that
:: \sum_ \lambda_(P) + h_(P) \le \epsilon h_H(P) + C
\quad\hbox P\in U(F).
Examples:
# Let X=\mathbb^N. Then K_X\sim -(N+1)H, so Vojta's conjecture reads \sum_ \lambda_(P) \le (N+1+\epsilon) h_H(P) + C for all P\in U(F).
# Let X be a variety with trivial canonical bundle, for example, an abelian variety, a K3 surface or a Calabi-Yau variety. Vojta's conjecture predicts that if D is an effective ample normal crossings divisor, then the S-integral points on the affine variety X\setminus D are not Zariski dense. For abelian varieties, this was conjectured by Lang and proven by .
# Let X be a variety of general type, i.e., K_X is ample on some non-empty Zariski open subset of X. Then taking S=\emptyset, Vojta's conjecture predicts that X(F) is not Zariski dense in X. This last statement for varieties of general type is the Bombieri-Lang conjecture.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Vojta's conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.